General Description

The patented TS1100 is a next-generation controller designed from the ground up for superior performance, easy installation and outstanding reliability. Using state-of-the-art microcontroller technology, the TS1100 provides both standard and enhanced user selectable flash patterns:

• Standard MUTCD Pattern (50 or 60 flashes per minute)
• Seven MUTCD Compliant Enhanced Patterns
• Auto-sequencing Flash Pattern Mode

Each enhanced flash is composed of a unique pattern of pulses sent during the flash period and conforms to MUTCD requirements. The Auto-sequencing Flash Pattern Mode continuously cycles through all seven enhanced flash patterns, displaying a single pattern during each activation period.

The TS1100 supports a wide range of crosswalk system configurations, and is compatible with standard activation devices (e.g., push-buttons, pedestrian crossing pads, etc.) and standard pre-warning devices (e.g., LED flashing signs and beacons).

Why Our Crosswalk System Controller Is Better

Superior Performance

• NEW: Approved by the Florida Department of Transportation (FDOT) as meeting all A615 environmental requirements.
• NEW: Extended temperature range: -30° C to 73.8° C.
• NEW: Power Interrupt Control (PIC) technology maintains system operation during power line transients.
• TSC Enhanced Flash Patterns and Auto-sequencing Flash Pattern Mode are designed to maximize pedestrian safety by increasing driver awareness and response to warning systems.
• Generation of contrasting flash patterns to crosswalk and pre-warning devices is supported by dual DC outputs.
• An activation override switch provides for continuous flashing of crosswalk during high-traffic events.

Easy Installation

• Easy onsite customization of system operation.

Outstanding Reliability

• LED status and digital displays allow easy verification of system operation and configuration during setup and testing.

Ordering Codes

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Model</th>
<th>Activation Options</th>
<th>Mounting Options</th>
</tr>
</thead>
</table>
| SC-TS1100 | - AC: 120 VAC | - 1: BDL3 Push-buttons
- 2: XAV2E-LED Push-buttons
- 3: PEDXPADs
- 4: PEDXPADs and BDL3 Push-buttons
- 5: SmartWalk XM Pedestrian Presence Sensor
- 6: Programmable Timer
- 7: Photo-Sensor Bollards | - A: NEMA 4 Compliant Enclosure
- B: TS1100 Back Panel (customer supplied enclosure) |

Notes: 1. Please contact TSC to discuss any modifications or additions to the controller system.
2. FDOT approved as a system when activated with push-button, PEDXPAD or both. SmartWalk XM/TX sensors, timers or other activations are not FDOT approved.
3. Pole Mounting Bracket Kit (SC-626005) supports U-bolts for pipe sizes 2" to 4" and 6" to 8". U-bolts and pipe not included.

Visit our web site: www.xwalk.com
How to Specify the TS1100-AC Crosswalk System Controller

The system controller shall be model SC-TS1100-AC as marketed by Traffic Safety Corporation or approved equal. In order to be approved equal, the proposed device must satisfy the following requirements:
1. System controller shall support multiple MUTCD compliant regular and enhanced flash patterns, and be capable of auto-sequencing through all enhanced flash patterns, one pattern per activation period.
2. System must be capable of passing the FDOT, A615 environmental requirements.
3. System shall include a Power Interrupt Controller (PIC) circuit to maintain system operation during power interruptions.
4. In the event of a power interrupt long enough to shut the system down, the system shall power up in an activated state.
5. System shall operate over the operating temperature range of -30° C to 73.8° C.
6. Output pattern operation, power limitations and output flash pattern selection:
 a. **Output A (Primary DC Power Output)**
 The maximum DC power output of the primary (10 amp limit) shall be 120 watts. The output flash pattern shall be selected by the pattern selector control located on the control card.
 b. **Output B (Secondary DC Power Output)**
 The maximum DC power output of the secondary (10 amp limit) shall be 120 watts. The output flash pattern shall be selected by a set of output mode selector switches (1-4) located on the control card: 1-Same as primary; 2-In sync with primary, but non-enhanced; 3-Non-enhanced complement of primary; 4-Continuously on while primary is flashing. Notes: (a) Enhanced flash patterns cannot be used when operating in wig-wag mode. (b) Only one output mode switch can be on (closed) at a time for proper operation of the system.
 c. **Combined Power Output**: The combined output power of the primary and secondary DC outputs shall be 120 watts.
7. System controller shall be based on an integrated, high-speed 8-bit microcontroller with non-volatile firmware and memory. All settings must be retained in the event that input power is removed.
8. System controller shall include the following controls and indicators:
 a. **Power LED Indicator**: A visual indicator LED shall be provided to indicate the “power on” condition.
 b. **Activation Duration Setting**: Activation duration shall be field adjustable in one-second increments, over a range of 1 to 99 seconds. Duration setting shall be displayed on a digital numeric display.
 c. **Flash Pattern Setting**: Flash pattern setting shall be field adjustable and be displayed on a digital numeric display.
 d. **Push-Button Test and LED Indicator**: System shall include an internal push-button used to activate the system during field tests. System shall include a visual indicator LED to indicate internal push-button and external activation device calls.
 e. **Override Switch**: System shall include an override switch to allow switching from manual system activation to continuous system activation.
 f. **Output LED Indicators**: System shall include visual indicator LEDs which indicate: system activation, primary output (A), and secondary output (B) status.
9. System shall support activation from standard contact-closure type push-buttons, push-buttons with audio message capability, and passive pedestrian sensors.
10. System shall provide a field selectable option to allow an activation call to be ignored, or be used to reset the cycle during an ongoing crossing cycle.
11. **System Protection**: All DC outputs shall be protected with a replaceable fuse. The input AC voltage shall be protected by a thermal-magnetic circuit breaker integral to the AC power supply. The AC power supply shall include transient surge protection. All DC electronics shall be electrically isolated from the AC input voltage.
12. **System Controller Enclosure**: The system shall include a single enclosure for ease of installation. The system shall be housed in a NEMA 4 compliant, aluminum enclosure with a thickness of 0.125" and with approximate dimensions of (20" H x 16" W x 7.32" D, mounting tabs add an additional 3" in height) to provide protection from adverse weather conditions. The enclosure shall have a mill finish and be supplied with NEMA 4 compliant lock for security from unauthorized access, and come with a minimum of one key.
13. **Warranty**: The crosswalk system controller shall be warranted against defects in workmanship and materials for one year from date of shipment, and is eligible for TSC's 5-Year Limited System Warranty.